

Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments

We do the right thing.

Kent Rosenberger

Community of Practice Technical Exchange

Las Vegas, NV December 12, 2014

Perspective

- Over the past 9 years Savannah River Remediation has issued three Performance Assessments (F-Tank Farm, Saltstone Disposal Facility, H-Tank Farm) and four Special Analyses
- Reviewers have included
 - Department of Energy (DOE) oversight personnel
 - South Carolina Department of Health and Environmental Control
 - Nuclear Regulatory Commission
 - Environmental Protection Agency
 - Other DOE contractors
 - Members of academia
 - SRS Citizens Advisory Board
 - Members of the public
- This presentation reflects the lessons learned and best practices gleaned from our experiences

Model Development

- Given the long time periods considered in modeling, there can be significant variability in possible future conditions
 - It is not reasonable to model everything
- A Base Case (or Evaluation Case) provides a single conceptual model as a foundation for communicating results
- Base Case serves as a comparison or reference case
- Base Case captures best knowledge available most probable and defensible conditions
 - Base Case model provides foundation, but has inherent uncertainty
- No ONE model provides a complete understanding of the system
 - Alternative conceptual models can then be used to improve understanding and build confidence

Challenges in Base Case Development

The Rest of the Story

- Base Case
- Benchmark Model or Alternate Method
- Alternative Conceptual Models
- Parameter Sensitivity Models
- Barrier Sensitivity Models
- Uncertainty Analyses
- Sensitivity Analyses
- Base Case Revision

More Modeling

Benchmarking/Alternate Methods

We do the right thing.

Benefits

- Builds confidence
- Provides additional modeling outlet
- Helps identify weaknesses or errors in models

Lessons Learned

- Which model is which?
 - Requires very clear documentation to avoid confusion as both models can be very similar
- Which model is "right"?
 - Even minor differences can cause stakeholders to question the validity of both models
- Why aren't they exactly the same?
 - Requires in-depth understanding and description of the differences between the models

Benefits from Benchmarking

We do the right thing.

Example of Using Benchmarking to Identify Weakness

Benefits from Benchmarking

We do the right thing.

Example of Using Benchmarking to Identify Weakness

Lessons Learned from Benchmarking

- Example of the Need to Understand the Differences between the Base Case and the Benchmark Model
- After the concentrations peak, mass quickly depletes in the GoldSim model while PORFLOW shows gradual decreases over thousands of years
- The PORFLOW model is a threedimensional representation of the system
 - PORFLOW includes an additional clay layer within the saturated zone which provides a storage zone for sorptive radionuclides

Lessons Learned from Benchmarking

We do the right thing.

 Example of the Need to Understand the Differences between the Base Case and the Benchmark Model

Lessons from Sensitivity Modeling

- Multiple single-parameter Sensitivity Models provide clear and useful understanding of how parameter variability influences model behavior
- Varying too many parameters simultaneously makes interpretation of results difficult

Temporal and Spatial Variability

- Model discretization can be challenging
- More discrete (e.g., more time steps or more nodes or 3-D)
 - Model takes a LONG time to run
 - Result files take up a LOT of disk space
 - Analyzing results becomes time consuming
 - File management issues
 - Model better captures extreme events
 - Easier to defend
- Less discrete (e.g., fewer time steps or fewer nodes or 1-D)
 - Model finishes quickly
 - Files sizes are smaller and more manageable
 - Analysis can be quicker and easier
 - Results show less accuracy
 - Harder to defend

Temporal and Spatial Variability

We do the right thing.

Example 1: Timestep Discretization can Change Results

More Discrete (2-yr Timesteps)

Less Discrete (50-yr Timesteps)

Temporal and Spatial Variability

- Example 2: Conservative versus Non-Conservative Assumptions Change with Respect to Time Period Considered
- Effects of Solubility on Tc-99
 Flux from SDU 6
 - Assuming high solubility is conservative for the first 20,000 years
 - Assuming nominal solubility is conservative between about 20,000 and 30,000 years
 - Assuming low solubility is conservative after 30,000 years

Challenges in Presenting the Results

Challenges in Presenting the Results

- If a picture is worth 1,000 words...
- Then a Video is Priceless

Understanding Roles

- Practitioners must remember that they will interface with oversight organizations, regulators, consultants, stakeholders, and members of the public.
- They all have a role to play so you should not be surprised when they perform that role - do not get emotional about your work product.
- Stakeholders may want to see results before all analyses are complete but there must be a balance between getting ahead of the reviews and understanding of results.
- Reviews and comments from varied perspectives will make a better finished product.
- Need to balance reviewers new to the facility/modeling versus experienced reviewers when looking at document revisions.
 There are pluses and minuses of each.

Prepare for Reviews

- You should know during the model development and analysis of results where the uncertainties lie and anticipate the questions.
 "What if ..."
- Exercise the model early and you can try to answer the what ifs within the original documentation rather than as responses to reviews.
- Get clarification to comments before expending significant efforts to answer what you "think" is the concern.
- If there are tools such as figures and videos that help you interpret results, they will probably help those reviewing your work so be prepared to share them.
 - Intermediate results
 - Movies
 - Model files

Conclusions

We do the right thing.

- Applying lessons learned and best practices will make the development of your documents and the review process less painful than figuring it out as you go.
- If you have any questions please feel free to contact me.

Kent Rosenberger

kent.rosenberger@srs.gov

803.645.2835